Результаты изучения фармакокинетических характеристик монокалиевой соли 1-гидроксиэтилденидифосфоновой кислоты, 99mTc и 188Re

Медицинский радиологический научный центр РАМН, Обнинск, Калужская обл., Россия

Активная разработка терапевтических радиофармпрепаратов (РФП) на основе 188Re и 188Re для лечения метастазов костей [1 – 3] основывается на результатах, полученных ранее при разработке аналогичных РФП на основе 99mTc для радионуклидной диагностики опухолевых заболеваний костей [4 – 9]. Наиболее изученными препаратами для радионуклидной диагностики опухолевых заболеваний костей являются меченные 99mTc метилденидифосфоновая кислота (99mTc-MDF), 1-гидроксиэтилденидифосфоновая кислота (99mTc-OEDF) и гидроксиэтилденидифосфоновая кислота (99mTc-GMDF) [10 – 12]. В работе [6] проведены сравнительные исследования распределения 99mTc-MDF, 99mTc-OEDF в организме пациентов с костными метастазами и показано, что существенных различий в уровне дифференциального накопления (отношение активности в костной ткани к активности в мягкой ткани) в костях не отмечается и составляет 4 – 5. Соотношение активности в опухоли к активности, накопленной в здоровой костной ткани, для 99mTc-OEDF через 4 ч после введения было незначительно выше (2,45), чем для 99mTc-MDF (2,20).

Учитывая, что химические свойства технекия и рения имеют большое сходство, можно было бы предположить, что дифосфонаты, меченные 188Re, будут обладать фармакокинетическими характеристиками, аналогичными 99mTc-дифосфонатам. Однако РФП на основе 188Re содержат значительное количество носителя (стабильного рения), в отличие от препаратов на основе 99mTc [13]. Поскольку химические свойства радионуклидов 188Re и 188Re имеют большое сходство, условия получения комплексных соединений 188Re с дифосфонатами, как правило, аналогичны 188Re [14 – 16].

Химические свойства технекия и рения подобны, но не идентичны. В частности, при восстановлении Tc(VII) до Tc(IV) и Re(VII) до Re(IV) окислительно-восстановительный потенциал рения (510 мВ) ниже, чем у технекия (738 мВ). Это свидетельствует о том, что Re(VII)-комплексы в высшем валентном состоянии термодинамически более устойчивы, чем аналоги Tc(VII). Более устойчивое состояние перенатона (ReO4-) затрудняет восстановление его до 4- и 5-валентного состояния, по сравнению с пертехнеатоном (TeO4-) [13]. Рений и технеций образуют комплексные соединения с органическими лиганда в 4- и 5-валентном состоянии. Для восстановления технекия и рения до более низкого валентного состояния чаще всего используют двуххлорное олово.

При получении комплексных соединений 99mTc с дифосфоновыми кислотами присутствие антисидантов в реакционной смеси, как правило, не нужно, тогда как при получении комплексов 188Re наличие антисиданта (аскорбиновая кислота или гентизиновая кислота) в реакционной смеси является необходимым
для повышения стабильности образующегося комплексного соединения [17 – 19].

В связи с тем, что ОЭДФ, удовлетворяющая по качеству требованиям Росздравнадзора, в России не выпускается, нами разработаны РФП на основе 99mTc, 188Re и монокалиевой соли 1-гидроксиэтиленидифосфоновой кислоты (КОЭДФ), которая выпускается в виде 20% раствора под названием "Кисдифон" и используется для лечения костной патологии, в частности остеопороза. Результаты радиохимических исследований показали, что разработанные наборы реагентов (диофизаты) позволяют получать РФП

<table>
<thead>
<tr>
<th>Наименование органа, ткани</th>
<th>Время после введения препарата</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 мин</td>
</tr>
<tr>
<td>Кровь</td>
<td>0,99 ± 0,14*</td>
</tr>
<tr>
<td></td>
<td>2,26 ± 0,23**</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Щитовидная железа</td>
<td>0,70 ± 0,17</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Легкие</td>
<td>1,98 ± 0,47</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Сердце</td>
<td>0,50 ± 0,07</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Печень</td>
<td>0,012 ± 0,002</td>
</tr>
<tr>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Желудок без содержимого</td>
<td>0,69 ± 0,04</td>
</tr>
<tr>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Тонкая кишка</td>
<td>1,90 ± 0,34</td>
</tr>
<tr>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Селезенка</td>
<td>0,38 ± 0,05</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Желудок без содержимого</td>
<td>0,64 ± 0,08</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Кожа</td>
<td>0,33 ± 0,04</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Селезенка</td>
<td>0,13 ± 0,03</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Селезенка</td>
<td>0,076 ± 0,07</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Тонкая кишка</td>
<td>0,019 ± 0,004</td>
</tr>
<tr>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Кожа</td>
<td>0,11 ± 0,02</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Мышцы</td>
<td>0,02 ± 0,01</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Кость голени</td>
<td>1,40 ± 0,33</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Кость черепа</td>
<td>1,38 ± 0,35</td>
</tr>
<tr>
<td></td>
<td>p < 0,25</td>
</tr>
<tr>
<td>Кость ребра</td>
<td>2,77 ± 0,65</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Кость позвоночника</td>
<td>1,08 ± 0,20</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
<tr>
<td>Скелет**</td>
<td>1,56 ± 0,34</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
</tbody>
</table>

** 99mTc-КОЭДФ
*** 188Re-КОЭДФ

Среднеарифметическое значение 4 видов костей (кость бедра, черепа, ребра и позвоночника).

Таблица 1
Сравнительные данные фармакокинетики 99mTc-КОЭДФ и 188Re-КОЭДФ в организме крыс после внутреннего введения препаратов (на 1 г ткани в % от введенного количества)
"199mTc-KOЭДФ" и "188Re-KOЭДФ" с радиохимическим выходом не менее 95 % [20, 21]. Радиохимические присмеси в виде несвязанного 188ReO4 и гидролизованного рения (188ReO3) не превышают 5 %.

В связи с тем, что сравнительные данные фармако-кинетики этих РФП в литературе отсутствуют, нами была поставлена задача: изучить фармако-кинетические характеристики РФП "199mTc-KOЭДФ" и "188Re-KOЭДФ" в организме лабораторных животных.

Экспериментальная часть

Люфилизаты "199mTc-KOЭДФ" и "188Re-KOЭДФ" получали путем люфильной сушки смеси ингредиентов во флюкаторе для инъекций вместимостью 10 мл в сублиматоре 15-SRC-X производства фирмы "VirTis" (США). В состав люфилизата "199mTc-KOЭДФ" входят: лиганд (КОЭДФ) — 10 мг; олово двуххлористое (SnCl2 · 2H2O) — 18,9 мкг, в пересчете на Sn2+ — 10 мкг. В состав люфилизата "188Re-KOЭДФ" входят: лиганд (КОЭДФ) — 20 мг; олово двуххлористое (SnCl2 · 2H2O) — 13,25 мкг, в пересчете на Sn2+ — 7 мг; аскорбиновая кислота — 7 мг.

Метку препаратов проводили при комнатной температуре путем введения элюата пеерхтенат натрия (Na99mTcO4) без носителя и перенат натрия (Na188ReO4) с носителем (натрий рениновский NaReO4 — 0,73 мг, в пересчете на Re7+ — 0,5 мг) в объеме 5,0 мл.

Коэффициенты 99mTc-KNaЭДФ, 188Re-KNaЭДФ, свободных перенат-иона (99mTcO4), перенат-иона (188ReO4) и гидролизованных технегия (99mTcO4) и рения (188ReO4) определяли с помощью бумагой хроматографии на ватмане Filttrak-17 (Германия). Элюирование проводили в акетоне. Комплексы 99mTc-KOЭДФ и 188Re-KOЭДФ остаются на старте, а свободные перенат-ион и перенат-ион поднимаются с фронтом элюента. Гидролизованные технегия и рений анализировали по отношению к вершине пика контрольной пробы, какой-то препараты вводили в описанных условиях. Результаты представлены в виде среднего арифметического с доверительным интервалом 95 %. В таблице приведены результаты исследования в виде средней величины (M ± m). Проверка значимости связей выполнена с помощью критерия Стьюдента. Результаты, превышающие 0,05, являются статистически значимыми.

Таблица 2
Отношение удельной активности кости бедра к удельной активности органов и тканей (КДН) интактных крыс после внутривенночного введения 99mTc-KOЭДФ и 188Re-KOЭДФ

<table>
<thead>
<tr>
<th>Наименование органа, ткани</th>
<th>5 мин</th>
<th>1 ч</th>
<th>3 ч</th>
<th>6 ч</th>
<th>24 ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кость бедра/кость</td>
<td>1,37 ± 0,21**</td>
<td>23,1 ± 4,34</td>
<td>114,4 ± 10,8</td>
<td>42,6 ± 5,24</td>
<td>157,2 ± 7,1</td>
</tr>
<tr>
<td>p > 0,25</td>
<td>p < 0,01</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/щитовидная железа</td>
<td>2,27 ± 0,65</td>
<td>23,7 ± 6,25</td>
<td>26,4 ± 2,04</td>
<td>23,6 ± 2,69</td>
<td>30,7 ± 4,15</td>
</tr>
<tr>
<td>p > 0,5</td>
<td>p < 0,02</td>
<td>p < 0,001</td>
<td>p > 0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/легкие</td>
<td>2,68 ± 0,53</td>
<td>48,8 ± 11,1</td>
<td>207,3 ± 25,9</td>
<td>242,3 ± 32,5</td>
<td>373,6 ± 38,2</td>
</tr>
<tr>
<td>Кость бедра/печень</td>
<td>118,7 ± 26,1</td>
<td>739,6 ± 106</td>
<td>1493,2 ± 244</td>
<td>1917 ± 269</td>
<td>1735 ± 126</td>
</tr>
<tr>
<td>p < 0,01</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/печень</td>
<td>0,73 ± 0,11</td>
<td>0,36 ± 0,29</td>
<td>4,89 ± 0,38</td>
<td>3,42 ± 0,27</td>
<td>3,45 ± 0,16</td>
</tr>
<tr>
<td>p > 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/сердце</td>
<td>3,58 ± 0,51</td>
<td>68,2 ± 7,33</td>
<td>242,3 ± 23</td>
<td>232,5 ± 258</td>
<td>538,5 ± 23,1</td>
</tr>
<tr>
<td>p > 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/селеznika</td>
<td>11,2 ± 2,69</td>
<td>82,2 ± 13,7</td>
<td>158,7 ± 38,3</td>
<td>357,3 ± 111</td>
<td>244,5 ± 41,5</td>
</tr>
<tr>
<td>p > 0,01</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/желудок</td>
<td>5,00 ± 0,86</td>
<td>20,5 ± 3,29</td>
<td>107,8 ± 8,38</td>
<td>33,4 ± 6,10</td>
<td>149,9 ± 8,40</td>
</tr>
<tr>
<td>p > 0,01</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/тонкая кишка</td>
<td>77,3 ± 18,3</td>
<td>958,8 ± 165</td>
<td>3457,6 ± 381</td>
<td>3089 ± 576,3</td>
<td>8302 ± 1860</td>
</tr>
<tr>
<td>p > 0,01</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/легкоговной</td>
<td>49,4 ± 13,1</td>
<td>586,9 ± 78,2</td>
<td>2050,9 ± 144</td>
<td>501,7 ± 62</td>
<td>1716 ± 162,6</td>
</tr>
<tr>
<td>p > 0,75</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/кожа</td>
<td>3,20 ± 0,66</td>
<td>40,1 ± 9,10</td>
<td>102,4 ± 13,0</td>
<td>84,6 ± 4,70</td>
<td>107,4 ± 9,80</td>
</tr>
<tr>
<td>p > 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кость бедра/мышца</td>
<td>6,10 ± 0,79</td>
<td>85,7 ± 3,90</td>
<td>552,4 ± 134,2</td>
<td>253,1 ± 39,7</td>
<td>902,1 ± 38,8</td>
</tr>
<tr>
<td>p > 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,95 ± 5,55</td>
<td>31,6 ± 5,45</td>
<td>19,8 ± 5,01</td>
<td>65,8 ± 12,4</td>
<td>126,5 ± 16,5</td>
<td></td>
</tr>
<tr>
<td>p > 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: здесь и в табл. 3 – 6: КДН — коэффициент дифференциального уровня накопления
** 99mTc-KOЭДФ
*** 188Re-KOЭДФ

Химико-фармацевтический журнал. Том 45, № 6, 2011
зировали также методом бумажной хроматографии на бумаге Filtrak-17 (Германия). В качестве элюента использовали смесь EtOH — 25 % NH₄OH — H₂O в соотношении 2:5:5. В этой системе ⁹⁹ᵐTc-КОЭДФ, ¹⁸⁸Re-КОЭДФ, свободные пертехнетат-ион (⁹⁹ᵐTcO⁴⁻) и пертехнет-ион (¹⁸⁸ReO⁴⁻) поднимались с фронтом элюента, а гидролизованные технеций и рений остались на стarte.

Количественное определение концентрации ⁹⁹ᵐTc-КОЭДФ, ¹⁸⁸Re-КОЭДФ, ⁹⁹ᵐTcO⁴⁻, ¹⁸⁸ReO⁴⁻, ⁹⁹ᵐTcO₂ и ¹⁸⁸ReO₂ проводили с помощью радиометрии полосок хроматографической бумаги. Для этого на полоски хроматографической бумаги шириной 10 мм и длиной 110 мм с помощью микропипетки производили «Labsystems» (Финляндия) наносили 5,0 мкл исследуемой пробы, полоски помещали вертикально в стакан и проводили элюирование. После того как элюент поднимается на высоту 100 мм, полоски удаляли из хроматографического стакана, высушивали при комнатной температуре, разрезали на 10 равных частей и проводили радиометрию. По результатам радиометрии вычисляли в процентах концентрацию ⁹⁹ᵐTc-КОЭДФ, ¹⁸⁸Re-КОЭДФ, ⁹⁹ᵐTcO⁴⁻, ¹⁸⁸ReO⁴⁻, ⁹⁹ᵐTcO₂ и ¹⁸⁸ReO₂. Радиометрию хроматографических полосок проводили с помощью автоматического гамма-счетчика “Wizard” версии 2480 фирмы “PerkinElmer/Wallac” (Финляндия). Счетчик имеет многоканальный анализатор с 2048 каналами, калиброванный по энергии гамма-излучения в интервале 15 — 2000 кВ с максимальным мертовым временем 2,5 микросекунд. Измерения ¹⁸⁸Re проводили по фотовику гамма-излучения с энергией 155 кВ, ⁹⁹ᵐTc — по фотовику гамма-излучения с энергией 140 кВ.

Радиохимическая чистота препаратов составляла не менее 95 %, радиохимические примеси в виде несвязанного технеция или рения (⁹⁹ᵐTcO₄⁻ и ¹⁸⁸ReO₄⁻) не превышали 3 %, гидролизованного технеция или рения (⁹⁹ᵐTcO₂ и ¹⁸⁸ReO₂) не превышали 2 %.

Фармакокинетические исследования РФП ⁹⁹ᵐTc-КОЭДФ” и “¹⁸⁸Re-КОЭДФ” проводили на 40 беспородных белых крысах массой 160 ± 20 г. Животные были поделены на 2 группы (по 20 крыс в каждой). Меченные препараты получали непосредственно перед проведением биологических испытаний. Перечисленное выше

Таблица 3
Описание удельной активности кости черепа к удельной активности органов и тканей (КДН*) интактных крыс после внутрипеневого введения ⁹⁹ᵐTc-КОЭДФ и ¹⁸⁸Re-КОЭДФ

<table>
<thead>
<tr>
<th>Наименование органа, ткани</th>
<th>Время после введения препарата</th>
<th>5 мин</th>
<th>1 ч</th>
<th>3 ч</th>
<th>6 ч</th>
<th>24 ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кость черепа/кровь</td>
<td></td>
<td>0,96 ± 0,10 **</td>
<td>10,0 ± 1,18</td>
<td>48,0 ± 5,25</td>
<td>87,2 ± 0,81</td>
<td>59,4 ± 5,30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,69 ± 0,29 ***</td>
<td>2,11 ± 0,20</td>
<td>3,02 ± 0,52</td>
<td>14,9 ± 0,37</td>
<td>31,2 ± 3,33</td>
</tr>
<tr>
<td></td>
<td>p > 0,25</td>
<td>p < 0,01</td>
<td>p < 0,001</td>
<td>p > 0,25</td>
<td>p < 0,01</td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Кость черепа/цистовидная железа</td>
<td></td>
<td>1,52 ± 0,33</td>
<td>10,1 ± 2,35</td>
<td>11,3 ± 1,58</td>
<td>4,07 ± 0,55</td>
<td>11,5 ± 0,70</td>
</tr>
<tr>
<td></td>
<td>p > 0,5</td>
<td>p < 0,01</td>
<td>p < 0,001</td>
<td>p > 0,5</td>
<td>p < 0,01</td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Кость черепа/легкие</td>
<td></td>
<td>1,91 ± 0,21</td>
<td>21,2 ± 0,54</td>
<td>87,4 ± 1,40</td>
<td>51,0 ± 8,50</td>
<td>139,0 ± 11,5</td>
</tr>
<tr>
<td></td>
<td>p > 0,25</td>
<td>p < 0,02</td>
<td>p < 0,002</td>
<td>p < 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Кость черепа/печень</td>
<td></td>
<td>80,9 ± 11,7</td>
<td>3249 ± 54,7</td>
<td>6446 ± 130,5</td>
<td>4033 ± 51,6</td>
<td>647,6 ± 39,0</td>
</tr>
<tr>
<td></td>
<td>p > 0,94</td>
<td>p < 0,001</td>
<td>p < 0,002</td>
<td>p < 0,01</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Кость черепа/очки</td>
<td></td>
<td>0,51 ± 0,03</td>
<td>1,34 ± 0,17</td>
<td>2,14 ± 0,38</td>
<td>0,71 ± 0,06</td>
<td>1,29 ± 0,04</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,01</td>
<td>p < 0,05</td>
<td>p > 0,05</td>
</tr>
<tr>
<td>Кость черепа/сердце</td>
<td></td>
<td>2,55 ± 0,34</td>
<td>29,8 ± 3,81</td>
<td>103,9 ± 18,6</td>
<td>48,1 ± 5,60</td>
<td>202,1 ± 12,2</td>
</tr>
<tr>
<td></td>
<td>p > 0,5</td>
<td>p < 0,002</td>
<td>p < 0,01</td>
<td>p < 0,05</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Кость черепа/селе-зенка</td>
<td></td>
<td>7,60 ± 1,24</td>
<td>36,6 ± 7,70</td>
<td>72,9 ± 25,0</td>
<td>79,8 ± 27,9</td>
<td>90,0 ± 12,5</td>
</tr>
<tr>
<td></td>
<td>p > 0,25</td>
<td>p < 0,02</td>
<td>p < 0,005</td>
<td>p < 0,05</td>
<td>p < 0,01</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Кость черепа/желудок</td>
<td></td>
<td>3,40 ± 0,30</td>
<td>9,02 ± 1,63</td>
<td>46,4 ± 8,14</td>
<td>6,68 ± 1,00</td>
<td>56,2 ± 3,80</td>
</tr>
<tr>
<td></td>
<td>p > 0,25</td>
<td>p < 0,02</td>
<td>p < 0,005</td>
<td>p < 0,001</td>
<td>p < 0,01</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Кость черепа/гонная кишка</td>
<td></td>
<td>53,7 ± 9,21</td>
<td>412,4 ± 59,9</td>
<td>1477,7 ± 216,9</td>
<td>6228 ± 68,6</td>
<td>3026 ± 538,9</td>
</tr>
<tr>
<td></td>
<td>p > 0,002</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
<td>p < 0,01</td>
<td>p < 0,002</td>
<td>p < 0,002</td>
</tr>
<tr>
<td>Кость черепа/мозг головной</td>
<td></td>
<td>33,9 ± 7,62</td>
<td>255,5 ± 36,3</td>
<td>855,9 ± 59,7</td>
<td>102,9 ± 9,80</td>
<td>637,9 ± 38,9</td>
</tr>
<tr>
<td></td>
<td>p > 0,25</td>
<td>p < 0,002</td>
<td>p < 0,001</td>
<td>p < 0,01</td>
<td>p < 0,001</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>Кость черепа/кожа</td>
<td></td>
<td>2,20 ± 0,27</td>
<td>17,5 ± 4,15</td>
<td>45,1 ± 10,5</td>
<td>17,7 ± 1,90</td>
<td>40,1 ± 3,40</td>
</tr>
<tr>
<td></td>
<td>p > 0,5</td>
<td>p < 0,05</td>
<td>p < 0,02</td>
<td>p > 0,5</td>
<td>p < 0,01</td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Кость черепа/мышца</td>
<td></td>
<td>4,30 ± 0,34</td>
<td>37,2 ± 1,97</td>
<td>249,1 ± 89,1</td>
<td>51,9 ± 7,40</td>
<td>340,1 ± 26,9</td>
</tr>
<tr>
<td></td>
<td>p > 0,25</td>
<td>p < 0,001</td>
<td>p < 0,05</td>
<td>p < 0,02</td>
<td>p > 0,05</td>
<td>p < 0,01</td>
</tr>
</tbody>
</table>

*КДН — концентрация дозы на 1 грамм

Химико-фармацевтический журнал. Том 45, № 6, 2011
вой группе животных внутривенно (в хвостовую вену) вводили 99mТс-КОЭДФ по 0,925 МБк (25 мкКи) в 0,1 мл 0,9% раствора NaCl, что составляло: КОЭДФ — $1,25 \pm 0,15$ мг/кг; Sn^{2+} — $1,25 \pm 0,15$ мг/кг. Второй группе животных внутривенно (в хвостовую вену) вводили 188Re-КОЭДФ по 0,37 МБк (10 мкКи) в 0,1 мл 0,9% раствора NaCl, что составляло: КОЭДФ — $2,5 \pm 0,3$ мг/кг; Sn^{2+} — $8,25 \pm 1,10$ мг/кг; Re^{7+} — $0,625 \pm 0,078$ мг/кг; аскорбиновая кислота — $8,25 \pm 1,10$ мг/кг.

Через определенные интервалы времени (5 мин, 1, 3, 6 и 24 ч) по 4 животных в каждый срок забивали под наркозом декапитацией, выделяя пробы органов и тканей, помещали в пластиковые пробирки, взвешивали на электронных весах "Sartorius" (Германия) и проводили радиометрию. Радиометрию образцов проводили с помощью автоматического гамма-счетчика.

По данным радиометрии рассчитывали содержание меченого препарата в 1 г массы ткани в процентах от введенного количества.

Результаты радиометрии обрабатывали методом оценки средне-квадратичной ошибки средней величины $(M \pm m)$:

$$M = \frac{\sum M_i}{n},$$
$$m = \sqrt{\frac{(M_i - M)^2}{n(n-1)}},$$

где M — средняя величина; n — количество проб; m — стандартная ошибка; M_i — одна из величин.

Кроме того, были рассчитаны коэффициенты дифференциального накопления (КДН) как частное от деления величин концентрации активности в костной ткани и мягких тканей.

Результаты и их обсуждение

Установлено, что наиболее высокий уровень накопления активности в 1 г всех органов и тканей отмечается через 5 мин после внутривенного введения

<table>
<thead>
<tr>
<th>Наименование органа, ткани</th>
<th>Время после введения препарата</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 мин</td>
</tr>
<tr>
<td>Кость ребра/кровь</td>
<td>2,66 ± 0,41**</td>
</tr>
<tr>
<td></td>
<td>0,60 ± 0,13****</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Кость ребра/щитовидная железа</td>
<td>4,28 ± 1,16</td>
</tr>
<tr>
<td></td>
<td>1,69 ± 0,80</td>
</tr>
<tr>
<td></td>
<td>p > 0,05</td>
</tr>
<tr>
<td>Кость ребра/легкие</td>
<td>5,25 ± 0,74</td>
</tr>
<tr>
<td></td>
<td>1,19 ± 0,20</td>
</tr>
<tr>
<td></td>
<td>p < 0,002</td>
</tr>
<tr>
<td>Кость ребра/печень</td>
<td>225,8 ± 45,8</td>
</tr>
<tr>
<td></td>
<td>2,02 ± 0,53</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Кость ребра/почки</td>
<td>1,40 ± 0,18</td>
</tr>
<tr>
<td></td>
<td>0,21 ± 0,05</td>
</tr>
<tr>
<td>Кость ребра/сердце</td>
<td>7,08 ± 1,21</td>
</tr>
<tr>
<td></td>
<td>2,12 ± 0,46</td>
</tr>
<tr>
<td></td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Кость ребра/селезенка</td>
<td>21,2 ± 4,72</td>
</tr>
<tr>
<td></td>
<td>4,14 ± 0,91</td>
</tr>
<tr>
<td>Кость ребра/желудок</td>
<td>9,30 ± 1,30</td>
</tr>
<tr>
<td></td>
<td>1,99 ± 0,39</td>
</tr>
<tr>
<td>Кость ребра/тонкая книшка</td>
<td>150,9 ± 35,1</td>
</tr>
<tr>
<td></td>
<td>3,07 ± 0,74</td>
</tr>
<tr>
<td>Кость ребра/мозг головной</td>
<td>93,9 ± 23,5</td>
</tr>
<tr>
<td></td>
<td>17,2 ± 4,90</td>
</tr>
<tr>
<td></td>
<td>p < 0,02</td>
</tr>
<tr>
<td>Кость ребра/кожа</td>
<td>6,00 ± 1,12</td>
</tr>
<tr>
<td></td>
<td>1,41 ± 0,34</td>
</tr>
<tr>
<td>Кость ребра/мышцы</td>
<td>11,8 ± 1,60</td>
</tr>
<tr>
<td></td>
<td>5,70 ± 2,24</td>
</tr>
<tr>
<td></td>
<td>p < 0,05</td>
</tr>
</tbody>
</table>
99mТc-КОЭДФ и 188Re-КОЭДФ (табл. 1). Удельное содержание активности в крови, легких, печени и тонкой кишке в период 5 мин — 24 ч статистически достоверно ниже при инъекции 99mТc-КОЭДФ по сравнению с 188Re-КОЭДФ. В остальных мягких органах и тканях аналогичная тенденция отмечается в течение первых 3 ч наблюдений, а в период 6 — 24 ч статистически достоверные различия не выявляются.

При сравнении данных удельной активности ряд органов и тканей (щитовидная железа, сердце, селезенка, желудок, головной мозг, кожа, мышцы) выявлено, что через 24 ч отмечается тенденция уменьшения уровня концентраций 99mТc-КОЭДФ и 188Re-КОЭДФ, а в некоторых органах и тканях (легкие, печень, тонкая кишка) содержание активности выше при инъекции 99mТc-КОЭДФ, чем 188Re-КОЭДФ. Несмотря на более высокий уровень накопления 188Re-КОЭДФ, чем 99mТc-КОЭДФ, в ряде органов и тканей в ранние сроки после инъекции, в более поздние сроки эти величины выравниваются за счет более интенсивной скорости выведения препарата, замеченного 188Re, из этих органов и тканей. Наиболее высокая скорость выведения активности при инъекции 188Re-КОЭДФ наблюдается из крови и легких. Удельное содержание активности в крови и легких в течение 24 ч уменьшается в 113,0 и 51,8 раз соответственно.

По данным кинетики распределения препаратов, меченых 99mТc и 188Re, в щитовидной железе обычно характеризуют их стабильность, так как не связанные радионуклиды 99mТc и 188Re имеют повышенную тропность к этому органу. Концентрация активности в щитовидной железе через 5 мин, 1 и 3 ч после инъекции 188Re-КОЭДФ выше соответственно в 2,82; 10,1; 8,76 раз, чем при инъекции 99mТc-КОЭДФ, тогда как через 6 и 24 ч эти различия минимальны. Это свидетельствует о том, что 99mТc, в отличие от 188Re, удерживается лигандом более прочно. Выравнивание концентраций активности в поздние сроки обеспечивается, по-видимому, более ускоренным, по сравнению 99mТc, выведением 188Re из ткани щитовидной железы.

Известно, что соединения из класса дифосфоновых кислот, представителем которых является КОЭДФ, обладают высокой токсичностью к костной ткани и используются для лечения костной патологии [22, 23].

<table>
<thead>
<tr>
<th>Наименование органа, ткани</th>
<th>Время после введения препарата</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 мин</td>
</tr>
<tr>
<td>Кость позвоночника/кровь</td>
<td>1,06±0,08**</td>
</tr>
<tr>
<td></td>
<td>0,57±0,01***</td>
</tr>
<tr>
<td></td>
<td>p<0,001</td>
</tr>
<tr>
<td>Кость позвоночника/щитовидная железа</td>
<td>1,63±0,28</td>
</tr>
<tr>
<td></td>
<td>1,31±0,50</td>
</tr>
<tr>
<td></td>
<td>p>0,5</td>
</tr>
<tr>
<td>Кость позвоночника/легкие</td>
<td>2,12±0,23</td>
</tr>
<tr>
<td></td>
<td>1,18±0,13</td>
</tr>
<tr>
<td></td>
<td>p<0,002</td>
</tr>
<tr>
<td>Кость позвоночника/печень</td>
<td>88,2±8,4</td>
</tr>
<tr>
<td></td>
<td>1,85±0,15</td>
</tr>
<tr>
<td></td>
<td>p<0,001</td>
</tr>
<tr>
<td>Кость позвоночника/почки</td>
<td>0,56±0,02</td>
</tr>
<tr>
<td></td>
<td>p<0,001</td>
</tr>
<tr>
<td>Кость позвоночника/сердце</td>
<td>2,82±0,38</td>
</tr>
<tr>
<td></td>
<td>2,02±0,13</td>
</tr>
<tr>
<td></td>
<td>p>0,05</td>
</tr>
<tr>
<td>Кость позвоночника/селезенка</td>
<td>8,20±0,95</td>
</tr>
<tr>
<td></td>
<td>3,91±0,21</td>
</tr>
<tr>
<td></td>
<td>p<0,01</td>
</tr>
<tr>
<td>Кость позвоночника/желудок</td>
<td>3,70±0,20</td>
</tr>
<tr>
<td></td>
<td>1,90±0,05</td>
</tr>
<tr>
<td></td>
<td>p<0,001</td>
</tr>
<tr>
<td>Кость позвоночника/тонкая кишка</td>
<td>59,0±8,98</td>
</tr>
<tr>
<td></td>
<td>2,98±0,39</td>
</tr>
<tr>
<td></td>
<td>p<0,001</td>
</tr>
<tr>
<td>Кость позвоночника/мозг головной</td>
<td>36,6±6,49</td>
</tr>
<tr>
<td></td>
<td>16,3±2,48</td>
</tr>
<tr>
<td></td>
<td>p<0,05</td>
</tr>
<tr>
<td>Кость позвоночника/кожа</td>
<td>2,40±0,19</td>
</tr>
<tr>
<td></td>
<td>1,39±0,22</td>
</tr>
<tr>
<td></td>
<td>p<0,02</td>
</tr>
<tr>
<td>Кость позвоночника/мышцы</td>
<td>4,80±0,32</td>
</tr>
<tr>
<td></td>
<td>4,99±1,12</td>
</tr>
<tr>
<td></td>
<td>p>0,5</td>
</tr>
</tbody>
</table>
связи с этим нами были проведены подробные исследования фармакокинетики комплексных соединений 99mTc и 188Re с КоЭДФ в костной системе.

Из данных, приведенных в табл. 1, видно, что накопление комплексных соединений 99mTc-КОЭДФ и 188Re-КОЭДФ в костной ткани наблюдается в ранние сроки после внутрисосудистого введения препаратов и та- ковым остается в течение всего периода исследований, при этом из 2 препаратов 99mTc-КОЭДФ имеет наиболее высокий уровень накопления во всех видах костной ткани (бедра, черепа, ребра, позвончика). Динамика накопления препаратов в костной ткании характеризуется постепенным увеличением концентрации препаратов, а затем медленным снижением. Максимальный уровень накопления 99mTc-КОЭДФ в костях отмечается в период 3–6 ч, а 188Re-КОЭДФ — через 1 ч после инъекции препаратов. После достижения максимальной величины концентрации активности начинается постепенное ее снижение, причем скорость элиминации 99mTc-КОЭДФ из костной ткани значительно ниже, чем 188Re-КОЭДФ. Так, максимальная средняя величина концентрации 99mTc-КОЭДФ в костной ткани через 3 ч составляет 4,37 %, а через 24 ч значение этой величины снижается до 3,20 %. При инъекции 188Re-КОЭДФ максимальная средняя величина концентрации препарата в костях через 1 ч составляет 3,06 %, а через 24 ч снижается до 0,63 %.

Результаты сравнительного изучения фармакокинетических характеристик 99mTc-КОЭДФ и 188Re-КОЭДФ в организме крыс свидетельствуют о том, что эти 2 комплексных соединения, имеющие одинаковую структуру, в значительной степени отличаются по биологическим свойствам, о чем свидетельствует характер их поведения в организме.

Соотношение активностей органов и тканей при внутрисосудистом введении 99mTc-КОЭДФ и 188Re-КОЭДФ более наглядно выглядит при расчете коэффициентов дифференциального накопления (КДН) активности в костной ткани по отношению к другим органам и тканям. Эти данные приведены в табл. 2–6, из которых видно, что численное значение КДН для всех видов костей по отношению к почкам составляет < 1, по отношению к другим мягким органам и тканям его величина > 1. Причем значение КДН

Таблица 6
Отношение удельной активности скелета к удельной активности органов и тканей (КДН*) интактных крыс после внутрисосудистого введения 99mTc-КОЭДФ и 188Re-КОЭДФ

<table>
<thead>
<tr>
<th>Наименование органов, ткани</th>
<th>5 мин</th>
<th>1 ч</th>
<th>3 ч</th>
<th>6 ч</th>
<th>24 ч</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скелет/кровь</td>
<td>1,51 ± 0,19**</td>
<td>22,0 ± 3,90</td>
<td>113,0 ± 14,2</td>
<td>39,7 ± 4,08</td>
<td>101,1 ± 1,60</td>
</tr>
<tr>
<td>Скелет/щитовидная железа</td>
<td>7,07 ± 0,14***</td>
<td>4,06 ± 0,44</td>
<td>3,77 ± 0,40</td>
<td>13,7 ± 3,28</td>
<td>33,1 ± 4,07</td>
</tr>
<tr>
<td>Скелет/легкие</td>
<td>2,42 ± 0,60</td>
<td>22,9 ± 6,33</td>
<td>25,8 ± 2,35</td>
<td>20,3 ± 13,8</td>
<td>19,8 ± 0,90</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>1,93 ± 0,92</td>
<td>2,08 ± 0,58</td>
<td>0,86 ± 0,18</td>
<td>5,57 ± 1,28</td>
<td>3,74 ± 0,75</td>
</tr>
<tr>
<td>Скелет/сердце</td>
<td>2,94 ± 0,32</td>
<td>46,6 ± 9,95</td>
<td>202,5 ± 27,6</td>
<td>227,7 ± 31,0</td>
<td>241,7 ± 27,6</td>
</tr>
<tr>
<td>Скелет/диафрагма</td>
<td>1,84 ± 0,20</td>
<td>7,92 ± 0,52</td>
<td>8,50 ± 1,11</td>
<td>20,5 ± 4,11</td>
<td>30,1 ± 4,03</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>128,4 ± 22,7</td>
<td>696,4 ± 80,5</td>
<td>1462,9 ± 250</td>
<td>1804 ± 189,9</td>
<td>1119 ± 6,86</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>2,37 ± 0,65</td>
<td>7,30 ± 1,19</td>
<td>7,14 ± 0,97</td>
<td>13,7 ± 1,44</td>
<td>34,0 ± 4,56</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>0,80 ± 0,08</td>
<td>2,89 ± 0,22</td>
<td>4,75 ± 0,29</td>
<td>7,19 ± 0,20</td>
<td>2,23 ± 0,14</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>0,24 ± 0,06</td>
<td>0,29 ± 0,01</td>
<td>0,22 ± 0,03</td>
<td>0,59 ± 0,04</td>
<td>1,32 ± 0,09</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>4,01 ± 0,56</td>
<td>64,6 ± 5,78</td>
<td>235,9 ± 21,4</td>
<td>359,4 ± 134,3</td>
<td>348,7 ± 23,2</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>2,47 ± 0,50</td>
<td>14,4 ± 0,73</td>
<td>14,0 ± 1,87</td>
<td>39,6 ± 10,2</td>
<td>65,0 ± 9,36</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>12,1 ± 2,37</td>
<td>76,6 ± 9,72</td>
<td>151,2 ± 31,0</td>
<td>359,4 ± 134,3</td>
<td>159,8 ± 30,1</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>4,79 ± 0,96</td>
<td>17,8 ± 0,74</td>
<td>15,8 ± 1,40</td>
<td>38,3 ± 11,8</td>
<td>42,1 ± 3,64</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>5,30 ± 0,63</td>
<td>19,3 ± 2,58</td>
<td>104,8 ± 6,85</td>
<td>30,2 ± 3,80</td>
<td>96,6 ± 5,10</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>2,31 ± 0,44</td>
<td>8,34 ± 1,15</td>
<td>7,28 ± 1,31</td>
<td>15,8 ± 3,43</td>
<td>25,9 ± 3,16</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>85,2 ± 17,4</td>
<td>934 ± 21,1</td>
<td>3403 ± 469,0</td>
<td>2911 ± 527,6</td>
<td>5383 ± 1288,8</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>3,63 ± 0,79</td>
<td>12,4 ± 0,43</td>
<td>7,80 ± 0,35</td>
<td>94,1 ± 66,6</td>
<td>44,7 ± 3,25</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>53,4 ± 12,5</td>
<td>555,6 ± 66,0</td>
<td>2026 ± 225,0</td>
<td>472,0 ± 59,8</td>
<td>1113 ± 127,1</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>19,9 ± 5,11</td>
<td>90,9 ± 7,40</td>
<td>76,6 ± 12,0</td>
<td>148,3 ± 26,2</td>
<td>273,5 ± 46,1</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>3,40 ± 0,55</td>
<td>37,7 ± 7,77</td>
<td>99,0 ± 10,1</td>
<td>80,3 ± 9,20</td>
<td>69,7 ± 7,80</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>1,60 ± 0,31</td>
<td>11,4 ± 0,58</td>
<td>10,0 ± 1,61</td>
<td>18,9 ± 3,60</td>
<td>28,1 ± 6,20</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>6,70 ± 0,67</td>
<td>82,2 ± 6,69</td>
<td>527 ± 104,9</td>
<td>240,8 ± 44,5</td>
<td>583,9 ± 37,0</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>6,76 ± 2,82</td>
<td>29,8 ± 1,90</td>
<td>19,9 ± 6,17</td>
<td>66,4 ± 11,9</td>
<td>131,9 ± 13,6</td>
</tr>
<tr>
<td>Скелет/печень</td>
<td>0,62 ± 0,05</td>
<td>8,01 ± 0,01</td>
<td>0,00 ± 0,01</td>
<td>0,00 ± 0,01</td>
<td>0,00 ± 0,01</td>
</tr>
</tbody>
</table>

Химико-фармацевтический журнал. Том 45, № 6, 2011
через 5 мин после инъекции ^99m^Tc-KOЭДФ и ^188Re-KОЭДФ по отношению к большинству органов и тканей статистически достоверных различий не имею. Во все остальные сроки наблюдений эти показатели для ^99m^Tc-KOЭДФ существенно выше, по сравнению с ^188Re-KОЭДФ. Динамика изменения этих величин характеризуется постепенным увеличением к 24 ч, причем более заметный рост отмечается для ^99m^Tc-KОЭДФ, чем для ^188Re-KОЭДФ. Эти данные свидетельствуют о том, что выведение активности из костной ткани происходит быстрее при инъекции ^188Re-KОЭДФ, по сравнению с ^99m^Tc-KОЭДФ.

Таким образом, в результате изучения фармакокинетических характеристик ^99m^Tc-KОЭДФ и ^188Re-KОЭДФ в организме крыс показано, что эти 2 комплексных соединения, имеющие одинаковую структуру, в значительной степени отличаются по биологическим свойствам, о чем свидетельствуют существенные различия их поведения в организме при внутривенном введении.

Литература

Comparative Analysis of Pharmacokinetic Characteristics of Radiopharmaceuticals Based on Monopotassium Salt of 1-Hydroxyethylidenediphosphonic Acid Labeled by ^99m^Tc AND ^188^Re

V. K. Shiryaeva, V. M. Petriev, A. A. Bryukhanova, O. A. Smorizanova, and V. G. Skvortzov

Medical Radiology Research Center, Russian Academy of Medical Sciences, Obninsk, Kaluga oblast, Russia

Investigation of pharmacokinetic characteristics of ^99m^Tc and ^188^Re labeled monopotassium salts of 1-hydroxyethylidenediphosphonic acid (KHEDP) in rat organism showed that the level of accumulated activity for 5 min, 1 h, and 3 h after intravenous injection of ^188^Re-KHEDP in most organs and tissues is higher than that after injection of ^99m^Tc-KHEDP. In the subsequent period (6 and 24 h), the values of specific activity in the majority of soft organs and tissues exhibit leveling due to more intense elimination of ^188^Re-KOEDF. The dynamics of labeled drug accumulation in bone tissues is characterized by a gradual increase in the concentration of activity followed by its slow decrease. The maximum level of ^188^Re-KHEDP in bones was achieved within 3 – 6 h, while the activity of ^99m^Tc-KHEDP was at maximum 1 h after injection. After reaching the maximum value, the activity gradually decreases. The rate of ^99m^Tc-KHEDP elimination from bone tissues is lower than that for ^188^Re-KHEDP. The ratios of the specific activity in organs and tissues upon intravenous injection of ^99m^Tc-KHEDP and ^188^Re-KHEDP are more clearly illustrated by the coefficients of differential accumulation (SDA) of activity in bone tissues (bone of femur, rib, skull and spinal) relative to soft organs and tissues. The dynamics of change in these values is characterized by gradual increase during 24 h upon injection. The growth is more pronounced for ^99m^Tc-KHEDP than for ^188^Re-KHEDP. These data show that the elimination of activity from bone tissues upon the injection of ^188^Re-KHEDP is faster than that in the case of ^99m^Tc-KHEDP. A comparative analysis of the SDA values allows the dynamics of drug accumulation and elimination rates from soft organs and tissues to be evaluated in comparison to bone tissues. Using the SDA values, it is also possible to determine the optimum terms for carrying out the scintigraphic study of the skeleton by means of the gamma-ray chamber. The results of studying the pharmacokinetic characteristics of ^99m^Tc-KHEDP and ^188^Re-KHEDP in rat organism showed that these complex compounds with generally similar structures substantially differ in the biological properties, as indicated by significant distinctions of their behavior in the organism upon intravenous introduction.

Key words: Radiopharmaceuticals labeled by ^99m^Tc and ^188^Re, monopotassium salts of 1-hydroxyethylidenediphosphonic acid (KHEDP), pharmacokinetics